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Effective Bloch Equations for
Semiconductor Lasers and Amplifiers

C. Z. Ning, R. A. Indik, and J. V. Moloney

Abstract—A set of effective Bloch equations is established
for semiconductor bulk or quantum-well media. The model in-
cludes the nonlinear carrier-density dependence of the gain and
refractive index and their respective dispersions (frequency de-
pendences). A comparative study is performed between the full
microscopic semiconductor Bloch equations and this effective
model for pulse propagation to show the range of validity of
the present model. The results show that this model agrees well
with the microscopic model provided carrier depletion is the
dominant saturation mechanism relative to the plasma heating.
The effective Bloch equations provide an accurate and practical
model for modeling amplifiers with pulses of duration greater
than a few picoseconds. By capturing the large bandwidth and the
carrier density dependence of the gain, it also provides a reliable
model for studying the complex spatiotemporal multilongitudinal
and transverse mode dynamics of a variety of wide-aperture
high-power semiconductor lasers. The model goes beyond the
traditional rate equations and is computationally much more
efficient to simulate than the full model.

Index Terms—Gain and index dispersion of semiconductors,
many-body effects, nonlinear optical gain, semiconductor ampli-
fiers, semiconductor laser modeling and simulation.

I. INTRODUCTION

T HE VERY LARGE gain bandwidth and its nonlinear
dependence on carrier density of inverted semiconductor

media provides both technological opportunities and funda-
mental modeling challenges. In a semiconductor amplifier, for
example, the carrier density undergoes very large excursions
in magnitude as an initially weak injected pulse grows out of a
noisy background and the corresponding optical susceptibility
function may fluctuate strongly in shape and magnitude. In
semiconductor diode lasers, the large gain bandwidth causes
the laser to typically run in multiple longitudinal modes
unless precautions are taken to suppress the latter by spec-
tral filtering using, e.g., Bragg gratings. Wide-aperture high-
brightness laser sources offer even greater challenges leading
to multilongitudinal/transverse mode dynamics, dynamic in-
tensity filamentation, and strongly nonuniform carrier density
fluctuations both along, and transverse to, the laser structure.
One would like to have a robust modeling scheme in which
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the nonlinear optical response function can adapt on the fly to
local density and intensity changes within the structure. The
latter optical response could be derived from a first principles
microscopic theory or measured experimentally.

In modeling or simulating high-power semiconductor lasers
or amplifiers, it is essential to capture those features of the
semiconductor (quantum well or bulk) lasers mentioned above:
the large gain bandwidth and the large density variations. The
phenomenological rate equations used for semiconductor laser
modeling, however, do not contain these features. The more
complete theory at the microscopic level is computationally
too expensive to be used. An alternative beyond these two
choices is needed for efficient and accurate modeling. There
are some models in the literature [6]–[11] which include
gain dispersion. However, we feel that the approach that we
will present in this paper is preferable. As we will discuss
in detail in the following sections, our approach is derived
from the detailed microscopic semiconductor physics and
uses more fundamental parameters, like material concentration
and quantum-well (QW) structure parameters. In addition,
the density as well as the frequency dependence of the
susceptibility is built into our model.

This paper is organized as follows. In the second section, we
give a detailed account of the background for our approach by
reviewing the current approaches based on rate equations and
microscopic theory. The calculation of the gain and refractive
index from the microscopic theory is then outlined in Section
III. This is followed by the approximation of the gain and
index and the establishment of our model in Section IV. In
Section V, we apply our model to pulse propagation, where we
compare the results of the current model with the microscopic
theory. In Section VI, we compare the current model with other
models that have been proposed [6]–[11]. In the last section,
we summarize the main results of this paper and point out
possible extension for the future research.

II. M OTIVATION AND BACKGROUND

Rate equations [12]–[14] or their static simplification, the
beam propagation model [15], [16] are most widely used
for the semiconductor laser modeling. Semiconductor laser
performance and the modeling based on these equations have
been extensively reviewed elsewhere [15], [16], [14]. The
traditional rate equations refer to the set of equations for
photon and carrier densities, but here we use this terminology
also for the set of equations for complex field amplitude (not
intensity or photon density) coupled with carrier density with
a linear gain or index change [14]. The advantage of the rate
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equations lies in their conceptual simplicity. In addition, rate
equations are very easy to simulate and can capture many of
the important features of laser operation.

There are, however, several issues that are especially rel-
evant for broad-area high-power lasers and amplifiers and
that are not addressed by simple rate equations. First, as is
well known, both gain and index are in general nonlinear
functions of carrier density, but the rate equation approach
uses linearized gain and index around the transparency or
the threshold density. For lasers operating near threshold, this
is not a problem since the carrier density is clamped to its
threshold value. However, the linear gain/index approxima-
tion becomes questionable for broad-area lasers, where there
is a significant lateral density change [18]–[21], associated
with the complex lateral mode structure [17], and for the
monolithical MOPA where longitudinal density changes along
the structure are important [24]. Another striking example
involving dramatic density change is the formation of the
complex transverse mode structures in large aperture vertical-
cavity surface-emitting lasers [1]–[3]. In these devices, there is
an associated transverse spatial hole burning with significant
density variations. In all these structures the carrier density
changes are so significant that a linearization of the gain and
index around any particular density becomes invalid. In [20],
the consequences of this linearization were demonstrated by
comparing the linearized gain and the nonlinear gain. It was
found that the gain at the lateral edges of the laser (and
therefore the beam extent) is overestimated using the linearized
gain. In addition inaccurate carrier-induced index profiles lead
to poor prediction of lateral beam filamentation.

Second, in the rate equations, a frequency independent
gain and index are used, which means that actual gain and
refractive index spectra with given curvatures (see Fig. 1) are
replaced by frequency independent straight lines. This is a
valid approximation for a single-mode laser. For broad-area
lasers, MOPA structures, and large aperture surface-emitting
lasers, multiple longitudinal modes or complex lateral mode
structures appear [1]–[3], [18], [19], [21]. In these cases,
each mode sees different gain (and index) depending on their
locations in the gain/index spectra. Even small differences in
gain for the individual modes will have an important influence
on the final laser output. Thus gain discrimination is very
critical.

Finally, it has been shown mathematically that the rate
equations with diffraction term included are ill-posed, showing
very different behavior of instabilities [22] from the full
Maxwell–Bloch model with polarization included. The numer-
ical evidence of this ill-posedness is an instability at grid-scale,
which might be mistaken for a numerical instability.

The above-mentioned issues are adequately addressed in the
full microscopic model [4], [5], known as the Semiconductor
Bloch Equations (SBE’s), as we will briefly show in Section
III. The microscopic theory with many-body interactions in-
cluded has shown better agreement with experiments [4], [5]
for describing optical responses of the semiconductor bulk
and QW media than the free-carrier counterpart. The problem
with the full microscopic theory in describing spatial-temporal
dynamics is the formidable computation involved. The SBE’s

(a)

(b)

Fig. 1. (a) Gain and (b) carrier-density induced index change for GaAs bulk
medium. The detuning is given in� = !=2�.1 The carrier densities are 2�
1018 cm�3, 3� 1018 cm�3, and 4� 1018 cm�3, respectively. The dashed
lines are calculated from the microscopic theory directly, while the solid lines
are fitted by a single Lorentzian plus the background contribution.

contain, in addition to the intrinsic complexity of the many-
body physics involved, time scales from nanoseconds down
to 50–100 fs [4]. As a result, numerical simulations using
explicit schemes must use very small time steps, while implicit
schemes amount to solving very large systems of equations.
On the other hand, we require at least a total simulation
time well in excess of nanoseconds to study the spatial-
temporal dynamics. The electronic wavevector dependence of
the polarizations and distribution functions makes the problem
one dimension larger than the usual laser equations for a
similar geometry.

There is a related issue that makes the computation more
expensive for semiconductor lasers. As we mentioned above,
the gain bandwidth for semiconductor lasers is typically very
large, so that the gain spectrum is quite flat, as we will
emphasize later in this paper. This means that the gain discrim-
ination for adjacent modes is very small, leading to the very
small difference in the decay or growth rates of neighboring
modes. This again requires that the computation time has to
be long enough to make a final determination of the long-term
dynamical behavior of the lasers, as a result of the neighboring
mode competition.

To study the spatial mode structure and lateral filamenta-
tion, we need to solve the corresponding partial differential
equations at the microscopic level [18], [19]. The addition
of the spatial resolution in lateral and/or transverse direction
of the laser device, coupled with small time steps and long

1It is to be noted that�1 � �! = 2��� for a Lorentzian oscillator.
Usually�� rather than�! is used as a measure of the gain bandwidth. A
time constant of 5 fs for1=�1 corresponds to a gain bandwidth of�� = 30
THz.
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computation time, makes the whole problem almost impossible
to simulate, even with today’s ever increasing computational
capability.

From what has been said above, it is clear that a model for
semiconductor lasers is needed which satisfies the following
criteria. It must adequately address the issues of carrier density
dependence and of the dispersion of gain and refractive index
and yet remain computationally manageable.

Our approach is the following. For a given QW or bulk
epitaxial structure, we calculate the gain and index (suscep-
tibility) spectra using the microscopic theory for a range
of carrier densities, typically, from below transparency up
to several times the laser threshold. For each density, we
parameterize the susceptibility spectrum by approximating the
spectrum as a superposition of several Lorentzians. The quan-
tities characterizing the individual Lorentzians then act as our
parameters. These parameters are functions of carrier density
(and temperature). In this way, the relevant frequency and
density dependence are retained. Using these parameterized
Lorentzians, we construct a set of equations which satisfy
the criteria mentioned above. In the simple case of a single
Lorentzian approximation, the set of equations is formally very
similar to the Bloch equations for two level atoms, thus we
call our model effective Bloch equations (EBE’s).

III. GAIN AND INDEX CALCULATION

FROM THE MICROSCOPICTHEORY

Our starting point is the microscopic many-body theory
under the Hartree–Fock approximation [4], [5]. For the plasma
screening, we use a single plasmon-pole model [5]. The theory
leads to the following SBE’s [4], [5] for carrier distribution
functions and the envelope polarization variables:

(1)

(2)

where and are the reference frequency, dephas-
ing rate of the polarization, carrier equilibration rate, and
carrier loss rate due to spontaneous and nonradiative processes,
respectively. The ’s are the pumping rate to individual
state. The ’s in (1) and (2) are the renormalized transition
frequency for each individual transition at electron wave vector

with and
being the conduction band and valence band single particle
energies, respectively, and the bare bandgap. The bandgap
shrinkage due to many-body interactions is a density-
dependent function [4]. The ’s are the generalized Rabi
frequency including the “internal field” due to the Coulomb
interactions: is
the complex laser field envelope and is the screened
Coulomb potential in Fourier representation,is Planck’s
constant divided by and is the dipole transition elements
which are obtained through the bandstructure calculation.

To obtain the linear susceptibility function, (1) and (2) are
solved in Fourier domain. Under the Padé approximation [5],

the intensity gain the carrier-induced index change
and the susceptibility are expressed in the form [4]

(3)

where we assume that carriers obey Fermi–Dirac statistics with
distribution functions and characterized by a total
density and plasma
temperature . As a result, the gain and index depend only
on total density, frequency and plasma temperature. In (3)

is the so-called Coulomb enhancement factor [4], [5].
is the optical wavevector in the medium of

background index with being the speed of light in the
vacuum. Other parameters in (3) are defined as follows:
and are the dielectric constant in the vacuum and the
relative dielectric constant of the medium, respectively. Many-
body effects manifest themselves in two ways in the above
expression. The individual transition frequency (denoted by

above) is “renormalized” by the Coulomb interaction [4],
[5] and the dipole transitions are modified by the Coulomb
enhancement factor (see [4] and [5]).

Our consideration is quite general and is applicable to
both QW structures and bulk medium. The indexin the
summation of (3) contains spin index and in the case of the
QW structure, also the confined band indices, in which case,
the should be understood as the wavevector in the plane of
the QW layer. In the case of the QW, we must first calculate
the confined bands and the bandstructure for all the confined
valence bands.

The first step to construct our model is to parameterize the
gain and index as calculated using the microscopic theory. To
begin with, we fix the plasma temperature as a constant in
the present model. The susceptibility is therefore a function
of two variables: density and frequency . Generally, we
require that the susceptibility calculated through (3)
for a given laser structure be approximated by superposition
of several Lorentzians, namely,

(4)

where is given by (3), and we also include a “back-
ground” contribution which is frequency indepen-
dent. In (4), we use a detuning parameter:

. Note that we allow the density dependence of the
“parameters” and for the individual
Lorentzian oscillators. In general, we expect to approximate
the susceptibility function quite well using only a few such
oscillators. Therefore, this approach could be called a few-
oscillator approximation for the semiconductor gain medium.
It is important to point out that for many applications it
suffices to have only one such Lorentzian oscillator plus
the “background” absorption and index. An example for this
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approximation is shown in Fig. 1 where gain and index spectra
for bulk GaAs, calculated from the microscopic theory for
three different densities, are plotted (solid lines) together with
the spectra of the approximations using (4) (dashed lines). The
physical meaning of this one oscillator is very simple:
essentially determines the strength of the Lorentzian.
determines the bandwidth of the spectrum which changes with
density. represents the gain peak shift with the density,
as is obvious from Fig. 1. We see that using one oscillator we
basically capture all of the essential features of the gain/index
spectra. Our next step is to establish a set of equations using
this approximated susceptibility as given by (4).

IV. THE EFFECTIVE BLOCH EQUATIONS (EBE’S)

Though most of the calculations in this paper are concerned
with the case of one oscillator, we will construct our model
for the general case of multiple oscillators. One reason is that,
at the higher excitation of the QW medium, the transitions
involving the second subband can be important, so that a gain
spectrum with two peaks may appear. In this case, a single
oscillator will definitely not be enough to approximate the
gain spectrum.

To construct our model equations, we note that, by obtaining
the gain and refractive index spectra for a given semiconductor
structure in the last section, we have actually solved the
equations (1). This fact together with our parameterization
means that we have the following relation:

(5)

where are the polarizations corresponding to the
individual Lorentzians, which we obtain by constructing their
Fourier components through the relation

(6)

where quantities with arepresent their Fourier transforms. If
we perform the inverse Fourier transform of (6), we obtain

(7)

while for we have because
no frequency dependence of is assumed. It is important
to note that, in performing the Fourier transformation, we have
treated density-dependent functions
and as if they were independent of time. In fact this is
not the case, because these functions depend on a time-varying
density. However, this is still a good approximation as long
as carrier density changes much more slowly compared to the
inverse gain bandwidth. This is obviously true in a typical
laser. For very strong and short pulses, this may not be a
good assumption.

Next we derive an equation for the total carrier density. This
is achieved by summing the-resolved density equations (2)
using (5). This leads to

(8)

where we have added the carrier diffusion term with diffusion
constant in the lateral direction . The parameters

are respectively, the quantum efficiency, pumping
current, electron charge, and active region thickness. In deriv-
ing (8), we have used the following relations:

(9)

(10)

The corresponding equation for the laser field amplitude is
written as

(11)

where is the group index and we also introduce the
confinement factor in (11).

Equations (7), (8), and (11) form the basic set of equations
for our model. These equations contain density-dependent
parameters which must be obtained from the independent
calculation of gain and index spectra, or from experimental
measurements.

For a given laser system, our first step is to parameterize
the susceptibility function using (4). The simplest way of
satisfying (4) is to do a best fit of the actually calculated

for a given density using the right-hand side of (4)
as a fitting function. Such fittings for a range of densities offer
density dependence of the functions
and . In Fig. 2, we show the density dependences of
these functions. One remarkable thing to note is that the width
of the Lorentzian, which corresponds directly to the gain band-
width2 in the case of single oscillator approximation, is quite
large. The corresponding time constant changes approximately
from 5 to 3 fs3 for densities between 1 10 m and 5

10 m which is ten to twenty times smaller than the
individual polarization decay time. We will discuss this further
when comparing with other models in Section VI.

To deal with those density-dependent functions (“parame-
ters”) that appear in (7), (8), and (11), we note that the density
dependence of these parameters could be well approximated
by linear functions of density within a certain density range,
as can be seen from Fig. 2. This allows us to have an explicit
set of equations which is useful when doing certain analyses.
In numerical simulation, however, it is rather straightforward
to use rational function fits for these functions. Equations (7),
(8), and (11) with parameters given as rational functions of
density can then be quite efficiently solved. Equations (7), (8),
and (11), for the case of single oscillator without the lateral

2See footnote 1.
3See footnote 1.
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Fig. 2. Plotted are “parameters” of the Lorentzian oscillator and the real
(�0;r) and imaginary(�0;i) parts of the “background” susceptibility. Stars
are calculated using the microscopic theory, while solid lines are fits to the
rational functions that are used in numerically solving the EBE’s.

Fig. 3. Linewidth enhancement factor(�) obtained using the fitted suscep-
tibility function at a fixed frequency 30 meV below the bare bandgap of the
GaAs.

derivatives, are similar in form to the standard Maxwell–Bloch
equations for the two-level system. The essential difference
lies in the density dependence of the parameters plotted in
Fig. 2.

To conclude the presentation of our model, we point out
that, since we now have an expression for the susceptibility
expressed as function of density-dependent parameters, many
important quantities such as differential gain and the linewidth
enhancement factor [28], [29] can be written explicitly.
Especially in the case of the single Lorentzian, the linewidth
enhancement factor can be expressed in a rather simple form.
Fig. 3 shows an example of at a fixed frequency near gain
peak as a function of carrier density using our parameterized

. This value is consistent with thevalues given in [4]. This
should, of course, be expected, since the parameterizedis a
good approximation of that computed microscopically.

V. APPLICATION TO PICOSECONDPULSE PROPAGATION

Picosecond pulse propagation in a semiconductor amplifier
provides a stringent test of the EBE model, both because

the energy of the pulse will grow quite large so that carrier
density varies significantly, and because plasma heating may
become important. The application of the present model to
the broad-area lasers and MOPA will be presented elsewhere
[23]. In this section, we consider pulse propagation in a bulk
GaAs amplifier. The parameters we use are standard ones for
GaAs. The corresponding microscopic theory was presented
in Section III. Pulse propagation using the full microscopic
theory has been extensively studied elsewhere [30]–[32].

For the electric field amplitude, we solve the propagation
equation for the laterally plane wave with a transverse confine-
ment factor of 0.2 for a bulk medium. The medium is modeled
by (1) and (2). Scattering processes are approximated by time
constants of 80, 170, and 300 fs for carrier–carrier, and elec-
tron–phonon, and hole–phonon scatterings, respectively. The
plasma temperature is extracted from the actual distribution
function obtained. Fig. 4 shows a comparison of propagations
of a Sech-shaped pulse using the full model [(1), (2), (11)] and
the EBE’s [(7), (8), and (11)] with an initial pulse FWHM of
20 ps. Fig. 4(a) shows two sets of almost indistinguishable
pulse profiles, with the slightly lower profile representing the
propagation of the full microscopic model. The medium is
initially inverted at a carrier density of 3 10 cm The
initial pulse amplitude is 6 meV which corresponds to roughly
the saturation intensity [30]–[32] for this pulsewidth. As we
can see, the pulse is not significantly amplified, but mostly
reshaped. We observe good agreement for reshaping of the
two profiles, despite the plasma temperature profile plotted
in Fig. 4(b) with a temperature rise above lattice temperature
(300 K) of about 10 K. We also compare an initially very weak
pulse of similar width. The agreement is consistently as good
as shown in Fig. 4. To see when the present model will fail, we
reduce the width of the pulse to 2 ps. We start from an initial
amplitude as weak as 0.1 meV. Fig. 5(a) shows the final stage
of the pulse propagation. At the earlier stage the agreement
is very good. We see, however, that the two profiles start
to diverge as the pulse propagates, with the peak amplitude
of the EBE model growing faster. In Fig. 5(b), we see the
plasma temperature increases up to around 20 K over the
lattice temperature. This plasma temperature rise is responsible
for the earlier saturation of pulse predicted by the full model.

In general, what we see are the two competing effects that
lead to pulse saturation. The first one is the familiar one due
to carrier depletion, determined by the pulse energy, roughly
given by peak intensity times the pulsewidth. The second
one is due to plasma heating. Which of the two appears first
with the propagation depends on the initial pulse intensity and
width, and the particular medium properties. In our present
EBE model, the effect of plasma heating is not included.
Only the first saturation mechanism can appear. In the first
case (Fig. 4), the pulse energy reaches a saturation value
before plasma temperature rises too high. The saturation of
peak intensity then halts the plasma heating. In the second
case (Fig. 5) the opposite happens. Before the pulse energy
reaches the saturation value, the plasma temperature is already
significantly elevated above lattice temperature and gain is
depleted. The pulse begins reshaping as predicted by the full
model, while the EBE model shows a further amplification
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(a)

(b)

Fig. 4. Pulse propagation in a bulk inverted medium. (a) Pulse intensity
profiles and (b) the corresponding plasma temperature elevation. The two pulse
profiles are almost indistinguishable, with the slightly lower one representing
the results of the full model.

due to the absence of the plasma heating mechanism. From
our experience, we can conclude that the two models agree
well for a plasma temperature rise roughly within 10 K. In a
typical laser, the time scale involved should be larger than a
picosecond, and the peak intensity is much lower. Therefore,
the EBE model should be a useful model for the broad-area
lasers and MOPA’s.

It is to be emphasized that the computation time is drasti-
cally reduced in the EBE model compared to the full SBE’s.
In the EBE model, only a few variables need to be calculated
at each spatial point. However, at first glance, it may appear
that the wide gain bandwidth, as reflected by the large value
of will still require very small time steps. This can
be avoided by using a semi-implicit scheme based on the one
used in [33]. This method would not be practical for the SBE
system, since the large (200 by 200, say) linear systems would
have to be solved at each step for each spatial point. Using
this scheme in the EBE model, the step size is not limited
by the but by the dynamics of the electrical field. In our
simulation of the above pulse propagations, the SBE system
typically requires CPU time 1000 times those required by the
EBE’s.

VI. COMPARISON TO THE OTHER MODELS

We are aware of a few other models proposed recently
[6]–[11] to describe semiconductor lasers and amplifiers with
inclusion of gain and/or index dispersions. These models can

(a)

(b)

Fig. 5. Same as Fig. 4, but for a shorter pulse of 2 ps. The thick line in (a)
shows the result of the EBE model. The initial pulse intensity is very weak,
but only the later stage of propagation is shown in the figure.

be divided into two categories: those adding dispersion terms
[6]–[8] to the field equations and those including a polarization
equation [9]–[11]. With the exception of [10], the density
dependence of gain and refractive index dispersions is not
included in these models. The basic idea of [6]–[8] is to expand
the linear gain and refractive index in the frequency domain
up to second order. The frequency-dependent gain is Fourier
transformed to time domain, leading to an equation for the
field amplitude containing the second-order time derivative.
Of course, such a Taylor expansion of the susceptibility in
Fourier space can be applied to our expression foras
given in (4), so the coefficients in the equations in [6]–[8],
can be derived from the values of the parameters that we
calculate. However, the derived values of those coefficients
will be density dependent. This dependence was not treated in
their models. This was not a problem for simulations of pulse
propagation where the pulse energies were low enough so that
the density did not vary a great deal. For high energy pulses, or
for simulation of high power lasers, the density variation can
be quite large. The comparison in [7] and [8] to experiments
is very impressive and shows that for subpicosecond pulses
it is necessary to include the effects of plasma heating. This
is included in their model via a linear dependence of gain
on temperature, with the temperature driven by free-carrier
absorption, stimulated emission, and two-photon absorption.
In addition, the gain and refractive index spectra in their
models are expanded in Taylor series up to second order.
This is very often a good approximation for many practical
applications, but to capture asymmetrical gain spectra, higher
order expansion is necessary. This leads to higher order time
derivatives. This should be compared with the necessity to
include more Lorentzian oscillators (thus more polarization
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variables) in our approach. In both cases, the order of the
system is increased. However, the Taylor expansion approach
is less suited to dealing with the QW medium at higher
densities. In that case, the higher QW subbands are involved,
so that the gain spectrum can show two peaks. Of course, any
arbitrary smooth shape can be approximated with a sufficient
number of terms, but high-order time derivatives will lead to
systems of equations that are numerically more intractable.
The approximation using multiple Lorentzians is more natural
in this setting and is numerically less difficult.

In another development, two-level-like Bloch equations
were used for modeling semiconductor lasers [9]–[11]. In
deriving these models, the authors of [9] and [11] used an
approximation that led to a single polarization equation with a
relaxation rate of the individual-resolved polarization. This is
equivalent to the homogeneous-broadening limit in gas lasers.
Unfortunately, this is a poor approximation for semiconductor
medium which is in the domain of the inhomogeneous limit
with a very large inhomogeneous linewidth (the gain band-
width), as can be seen in Fig. 1. As we see from Fig. 2, the
values of the curve change from the 5 10 s to
around 30 10 s . This is the typical gain bandwidth4

of a semiconductor medium, consistent with experimental
measurements [34]. In [9], [11], as well as in [6], however,
the homogeneous linewidth of individual oscillators of 1
10 s was used as the gain bandwidth, or equivalently as
the effective polarization decay constant. As a consequence of
this underestimated gain bandwidth, pulse broadening in time
domain could be overestimated in [6]. One could use values
for the linewidth in the models of [6], [9], and [11] that would
lead to values for gain bandwidth that are more realistic, but
without a density dependence, one could not use these models
to calculate behavior of systems where the density has a large
variation. We note that in a somewhat different approach [10] a
relaxation constant corresponding to a realistic gain bandwidth
was obtained for the free-carrier case. The density dependence
of gain spectrum was also considered there. However, it
seems difficult to include many-body interactions using their
approach.

VII. CONCLUSION

In summary, we have constructed a model for semiconduc-
tor lasers and amplifiers. The main motivation is to bridge the
gap between two well-established theories: the rate equations
on the one hand and the microscopic many-body theory on the
other. The two issues, density and frequency dependence of the
gain and refractive index that are contained in the microscopic
many-body theory, are addressed now at the macroscopic level
by a parameterization procedure. Our model is tested in the
case of pulse amplification. The main application of the present
model is to describe the broad-area lasers and amplifiers with
transverse and/or longitudinal extension. The usefulness of the
model to these problems will further be demonstrated in a
forthcoming publication [24]. One of the advantages of the
present model is that the resultant equations, the EBE’s, can
now be solved much more efficiently. At the same time, the

4See footnote 1.

EBE’s are formally very similar to the Bloch equations of
the two-level atoms. This makes the equations more easily
accessible by researchers without detailed knowledge of many-
body theory. Finally we want to emphasize that the procedure
can be equally well applied to experimentally measured gain
and index spectra.

Perhaps the most important extension of this work now
underway is the inclusion of the effects of plasma heating.
We have seen that the EBE’s do an excellent job of modeling
pulse propagation in semiconductor media provided the plasma
heating is not a strong factor in gain saturation (see Figs. 3 and
4). As was mentioned in the derivation of the EBE’s, we can
take into account not only the effects of density dependence
of the susceptibility, but also the effects of the plasma heating.
In order to include this effect in a self-consistent fashion, it is
necessary to sum the to obtain an equation for
the kinetic energy, in much the same way thatwas summed
to produce (8) (cf. [24]–[27]). In this way, the present method
can be extended to describe the propagation of shorter and
higher energy pulses.
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